• 1 Abstract
  • 2 Methods
  • 3 Results
    • 3.1 Dataset properties
      • 3.1.1 All selected projects
        • 3.1.1.1 Project id subtypes
        • 3.1.1.2 Primary diagnosis subtypes
      • 3.1.2 TCGA-SARC
        • 3.1.2.1 Primary diagnosis subtypes
        • 3.1.2.2 Paper histology subtypes
      • 3.1.3 LM22 signature matrix
    • 3.2 Co-expression network with WGCNA
      • 3.2.1 Projects
        • 3.2.1.1 TCGA-SARC dataset
        • 3.2.1.2 TCGA-BLCA dataset
        • 3.2.1.3 TCGA-BRCA dataset
        • 3.2.1.4 TCGA-OV dataset
        • 3.2.1.5 TCGA-LIHC dataset
        • 3.2.1.6 TCGA-LUAD dataset
        • 3.2.1.7 TCGA-LUSC dataset
        • 3.2.1.8 TCGA-MESO dataset
        • 3.2.1.9 TCGA-OV dataset
        • 3.2.1.10 TCGA-PAAD dataset
        • 3.2.1.11 TCGA-STAD dataset
      • 3.2.2 Primary diagnosis subsets
        • 3.2.2.1 Leiomyosarcoma
        • 3.2.2.2 Dedifferentiated liposarcoma
        • 3.2.2.3 Undifferentiated sarcoma
        • 3.2.2.4 Fibromyxosarcoma
        • 3.2.2.5 Malignant fibrous histiocytoma
        • 3.2.2.6 Malignant peripheral nerve sheath tumor
      • 3.2.3 Paper histology subsets
        • 3.2.3.1 STLMS
        • 3.2.3.2 ULMS
        • 3.2.3.3 DDLPS
        • 3.2.3.4 UPS
        • 3.2.3.5 MFS
      • 3.2.4 Synthesis
        • 3.2.4.1 Hallmarks
          • 3.2.4.1.1 Alphabetically-ordered hallmarks and all datasets
          • 3.2.4.1.2 Occurency-ordered hallmarks and all datasets
          • 3.2.4.1.3 Log10 transformed color scale
        • 3.2.4.2 Kegg
          • 3.2.4.2.1 Manually-selected and ordered pathways and datasets
          • 3.2.4.2.2 Alphabetically-ordered Kegg and all datasets
          • 3.2.4.2.3 Occurency-ordered Kegg and all datasets
          • 3.2.4.2.4 Log10 transformed color scale
        • 3.2.4.3 Pathway
          • 3.2.4.3.1 Alphabetically-ordered Pathway and all datasets
          • 3.2.4.3.2 Occurency-ordered Pathway and all datasets
          • 3.2.4.3.3 Log10 transformed color scale
    • 3.3 Differential expression analyses with DESeq2
      • 3.3.1 VNN1 High VS Low
        • 3.3.1.1 Projects subsets
          • 3.3.1.1.1 TCGA-SARC
            • 3.3.1.1.1.1 Gender covariate
            • 3.3.1.1.1.2 Gender and primary diagnosis as covariates
          • 3.3.1.1.2 TCGA-BLCA
            • 3.3.1.1.2.1 Gender covariate
            • 3.3.1.1.2.2 Gender and primary diagnosis as covariates
          • 3.3.1.1.3 TCGA-BRCA
            • 3.3.1.1.3.1 Gender covariate
            • 3.3.1.1.3.2 Gender and primary diagnosis as covariates
          • 3.3.1.1.4 TCGA-ESCA
            • 3.3.1.1.4.1 Gender covariate
            • 3.3.1.1.4.2 Gender and primary diagnosis as covariates
          • 3.3.1.1.5 TCGA-LIHC
            • 3.3.1.1.5.1 Gender covariate
            • 3.3.1.1.5.2 Gender and primary diagnosis as covariates
          • 3.3.1.1.6 TCGA-LUAD
            • 3.3.1.1.6.1 Gender covariate
            • 3.3.1.1.6.2 Gender and primary diagnosis as covariates
          • 3.3.1.1.7 TCGA-LUSC
            • 3.3.1.1.7.1 Gender covariate
            • 3.3.1.1.7.2 Gender and primary diagnosis as covariates
          • 3.3.1.1.8 TCGA-MESO
            • 3.3.1.1.8.1 Gender covariate
            • 3.3.1.1.8.2 Gender and primary diagnosis as covariates
          • 3.3.1.1.9 TCGA-OV
            • 3.3.1.1.9.1 No covariate
            • 3.3.1.1.9.2 Primary diagnosis as covariate
          • 3.3.1.1.10 TCGA-PAAD
            • 3.3.1.1.10.1 Gender covariate
            • 3.3.1.1.10.2 Gender and primary diagnosis as covariates
          • 3.3.1.1.11 TCGA-STAD
            • 3.3.1.1.11.1 Gender covariate
            • 3.3.1.1.11.2 Gender and primary diagnosis as covariates
        • 3.3.1.2 Primary diagnosis subsets
          • 3.3.1.2.1 Leiomyosarcoma
          • 3.3.1.2.2 Dedifferentiated liposarcoma
          • 3.3.1.2.3 Undifferentiated sarcoma
          • 3.3.1.2.4 Fibromyxosarcoma
          • 3.3.1.2.5 Malignant fibrous histiocytoma
          • 3.3.1.2.6 Malignant peripheral nerve sheath tumor
        • 3.3.1.3 Paper histology subtypes
          • 3.3.1.3.1 STLMS
          • 3.3.1.3.2 ULMS
          • 3.3.1.3.3 DDLPS
          • 3.3.1.3.4 UPS
          • 3.3.1.3.5 MFS
    • 3.4 Cell deconvolution with CIBSERSORTx
      • 3.4.1 Highlight Neutrophils
    • 3.5 Correlation analyses
      • 3.5.1 All selected projects
      • 3.5.2 TCGA-SARC only with cell deconvolution
    • 3.6 PCA
      • 3.6.1 All selected projects
        • 3.6.1.1 On most genes
        • 3.6.1.2 Top 2000 variance genes
      • 3.6.2 Well- or de-differentiated liposarcoma
        • 3.6.2.1 On most genes
        • 3.6.2.2 Top 2000 variance genes
    • 3.7 UMAP
      • 3.7.1 All selected projects
        • 3.7.1.1 Most genes
        • 3.7.1.2 Top 2000 variance genes
      • 3.7.2 Well or dedifferentiated liposarcomas
        • 3.7.2.1 Most genes
        • 3.7.2.2 Top 2000 variance genes
    • 3.8 Survival analyses
      • 3.8.1 VNN1 high VS low
        • 3.8.1.1 By project id
        • 3.8.1.2 By primary diagnosis
      • 3.8.2 VNN1 tertiles
        • 3.8.2.1 By project id
        • 3.8.2.2 By primary diagnosis
      • 3.8.3 Neutrophil infiltration Yes Vs No
        • 3.8.3.1 By project id
        • 3.8.3.2 By paper short histo
          • 3.8.3.2.1 STLMS
          • 3.8.3.2.2 DDLPS
          • 3.8.3.2.3 UPS
        • 3.8.3.3 VNN1 survival for non-infiltrated-by-neutrophil sarcoma
        • 3.8.3.4 VNN1 survival for infiltrated-by-neutrophil sarcoma
  • 4 Timetracking

VNN1 role in sarcoma outcome

VNN1 role in sarcoma outcome

Guillaume Charbonnier

14 September, 2022